Three complexes of bis(N-methyl-benzohydroxamato- O, O^{\prime})copper(II)

Russell G. Baughman,* Daniel J. Brink, Jill M. Butler and Pamela R. New \dagger

Division of Science, Truman State University, Kirksville, MO 63501-4221, USA
Correspondence e-mail: baughman@truman.edu

Received 31 August 1999
Accepted 18 January 2000

The first single-crystal studies of three bis-transoid Cu-hydroxamate salts, bis(3-methoxy-4, N -dimethylbenzohydroxamato$\left.O, O^{\prime}\right) \operatorname{copper}(\mathrm{II}),\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{3}\right)_{2}\right]$, bis(4-chloro- N-methyl-benzohydroxamato- $\left.O, O^{\prime}\right) \operatorname{copper}(\mathrm{II}), \quad\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClNO}_{2}\right)_{2}\right]$, bis(N-methyl-3,5-dinitrobenzohydroxamato- O, O^{\prime})copper(II)chloroform (1/2), $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{6}\right)_{2}\right] \cdot 2 \mathrm{CHCl}_{3}$, are presented. The Cu atom in each of the title compounds sits at a center of inversion and displays a nearly square-planar geometry with the hydroxamate-O atoms connected to it in a syn configuration. The N atoms are in a transoid configuration. Each fivemembered Cu -hydroxamate ring is planar, thus providing evidence that a planar N atom is present in each ring. The phenyl groups are twisted with respect to the hydroxamate group by $\sim 40-54^{\circ}$. The angular strain of the $s p^{2}$ carbonyl oxygen is significant ($\sim 10^{\circ}$ from ideal).

Comment

Copper complexes containing derivatives of the N-methylbenzohydroxamate ligand have been prepared for the study of the organic ligand as an α nucleophile [see, for example, Carey \& Sundberg (1990) for a discussion on the α effect]. Unlike the only other previous single crystallographic studies involving Cu hydroxamates [a dimer by Barclay \& Raymond (1986) and metallocrown compounds by Stemmler et al. (1999)], we are interested in how the presence of a transition metal will affect the role of the α nucleophile in substitution reactions. Crystal structure determinations were performed to determine the bonding mode of the organic ligands to the copper center, as well as to serve as a starting point for future molecular modeling studies.

All three of the title compounds have a Cu atom at a center of inversion so the hydroxamate- N atoms are in the transoid configuration, thus making this the first report of bistransoid Cu -hydroxamate structures. The five-membered $\mathrm{Cu}-\mathrm{O} 1-$

[^0]$\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 2$ groups are planar for (I), (II), and (III) (r.m.s. deviations $=0.010,0.005,0.005 \AA$, respectively). The r.m.s. distances of C 1 and C 3 from this plane in (I), (II), and (III) are, respectively, 0.062 and $-0.030,0.114$ and -0.023 , and 0.112 and $0.038 \AA$. Thus, each N 1 atom is essentially planar. The O atoms assume a syn configuration yielding $\mathrm{O} 1-\mathrm{Cu}-$ O2 and supplementary angles of ~ 84 and $\sim 96^{\circ}$ (Table 1), respectively, thus making a nearly square-planar geometry about the Cu atom.

While most of the selected distances and angles noted in Table 1 are comparable, some significant $(>4 \sigma)$ ones are noteworthy. In (III), the $\mathrm{Cu}-\mathrm{O} 1$ distance is longer than in complexes (I) or (II), while the $\mathrm{Cu}-\mathrm{O} 2$ distance is concomitantly shorter than its counterparts. Similarly, in (I), the $\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$ angle is smaller than for (II) or (III); C1 $-\mathrm{N} 1-$ C 2 is larger.
For the most part, the $\mathrm{Cu}-\mathrm{O} 1$ distances in the three title complexes are shorter than in a few other five-membered, though not hydroxamate, rings. Singly bonded $\mathrm{Cu}-\mathrm{O}$ distances of 1.902 (2) and 1.892 (2) A (with cupferron; Elerman et al., 1995); 2.011 (2) and 2.013 (2) \AA (with 2-amino-2-thiazoline-4-carboxylic acid; Stocker et al., 1999); 1.936 (3) and 1.959 (3), and 1.935 (5) and 1.967 (4) \AA (with picolinamide hydrazone:alanine and picolinamide hydrazone:glycine, respectively; Thompson et al., 1998) have been reported.

Stemmler et al. (1999) reported an average oxime $\mathrm{O}-\mathrm{Cu}$ distance for the five metallocrown complexes in their study as 1.934 (6) \AA, a difference of $\sim 6 \sigma$ greater than this work. The average carbonyl $\mathrm{O}-\mathrm{Cu}$ distance of 1.947 (6) \AA is just slightly $(>3 \sigma)$ longer than those in this report. In each of their structures, the oxime-O atoms have a third coordination to a lanthanide facilitating a bridging of Cu atoms to the Ln atom. The hydroxamate- N atoms are also coordinated to a Cu atom aiding in the formation of the metallocrown complexes. They also reported an average value for the $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$ angle (present notation) of $85.8(2)^{\circ}$, a difference of $>7 \sigma$ from this work. Barclay \& Raymond (1986) reported a single dimeric complex in which the N atoms are cisoid, all of which is different from that reported in this work. Their distances for oxime $\mathrm{O}-\mathrm{Cu}[1.885(4) \AA]$ and carbonyl $\mathrm{O}-\mathrm{Cu}[1.915$ (4) $\AA]$ are both $<2 \sigma$ of the present work. Additionally, their average $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$ angle of $84.2(2)^{\circ}$ is $<1 \sigma$ from this work. The stronger similarity of Barclay \& Raymond's (1986) complex to the three structures reported here is likely due to the hydroxamate groups being less constrained in all four complexes than in the work of Stemmler et al. (1999).

Although the angles about O 1 and O 2 in this work are all $\sim 110^{\circ}, \mathrm{Cu}-\mathrm{O} 2-\mathrm{C} 2$ is significantly $(>7 \sigma)$ larger than $\mathrm{Cu}-$ O1-N1 (cf. Table 1). Additionally, the deviation of these angles from that anticipated from the hybridization at each oxygen would indicate more strain at O 2 . Consistent with this is the average $\mathrm{C} 2=\mathrm{O} 2$ distance of $1.281(4) \AA$ which is significantly longer than the values of 1.20 (2) to 1.25 (1) \AA for three free hydroxamic acids (Baughman, 1982) and the average of 1.23 (1) \AA cited in the International Tables for Crystallography, thus confirming a concomitant weakening of the $\mathrm{C} 2=\mathrm{O} 2$ bond as O 2 donates electron density to the Cu atom. Similar comparisons of the $\mathrm{N} 1-\mathrm{O} 1$ distances in (I)-
(III) would best be performed with the 'free' hydroxamate anion. These studies are currently in progress and will be reported in a future paper.

For (I), the methoxy group is coplanar with the phenyl ring as the dihedral angle is $2.2(2)^{\circ}$. However, the phenyl rings for (I), (II) and (III) are not coplanar with the hydroxamate group, thus reducing delocalization throughout all three systems. The reason for the twisting of the phenyls to comparable dihedral angles [40.86 (7), 54.37 (8) and 46.26 (9) ${ }^{\circ}$ for (I), (II) and (III), respectively] is primarily due to the steric interference of the H on C 8 with the C 1 methyl group (Table 3). No close (van der Waals) intermolecular contact

Figure 1
Views of (I), (II) and (III) showing the labeling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels. For (III), H9a is drawn as a small sphere of arbitrary radius.
with the phenyl is noted for (I); a few are noted for (II) and (III) (Table 3), perhaps explaining why the dihedral angles for (II) and (III) are larger than for (I).

In (III), a molecule of CHCl_{3} is hydrogen bonded to O 1 $(\mathrm{H} \cdots \mathrm{O} 1=2.34, \mathrm{C} 9 \cdots \mathrm{O} 1=3.18 \AA, \mathrm{~N} 1-\mathrm{O} 1 \cdots \mathrm{H} 9=107$, $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 1=146^{\circ}$). Both nitro groups (O5/N3/O6 and O3/N2/O4) are slightly twisted with respect to the phenyls as the dihedral angles are 9.6 (6) and 19.7 (4) ${ }^{\circ}$, respectively, likely due to numerous close contacts noted in Table 2.

Experimental

Compound (I): in a method similar to that of Bhattacharyya \& Dhar (1982), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ was added to 3-methoxy-4-methyl- N -methylbenzohydroxamic acid (1.1 mmol) in $\mathrm{EtOH}(20 \mathrm{ml})$. To this mixture, $\mathrm{NaOH}(1 \mathrm{ml}$ of $1 M)$ was added dropwise with stirring. The precipitate that formed quickly was filtered off, washed and recrystallized (slow evaporation, ~ 1 week) from a minimal amount of CHCl_{3} and ten drops of benzene. Compound (II): $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ was added to sodium 4-chloro- N -methylbenzohydroxamate (1.1 mmol) in $\mathrm{EtOH}(30 \mathrm{ml})$ with constant stirring. This quickly produced a precipitate which was filtered off, and washed and recrystallized (slow evaporation, ~ 1 week) from a minimal amount of CHCl_{3}. Compound (III): $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ was combined with sodium 3,5-dinitro- N -methylbenzohydroxamate (1.1 mmol) in EtOH $(40 \mathrm{ml})$ with constant stirring. The quickly appearing resultant yellow powder was recrystallized from a minimal amount of CHCl_{3} yielding green crystals in $\sim 3 \mathrm{~d}$.

Compound (I)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{3}\right)_{2}\right]$
$M_{r}=451.97$
Monoclinic, $P 2_{1} / n$
$a=7.532(2) \AA$
$b=9.073$ (3) \AA
$c=14.654$ (4) \AA
$\beta=99.07$ (2) ${ }^{\circ}$
$V=988.9(5) \AA^{3}$
$Z=2$

Data collection

Siemens P3 diffractometer $\theta / 2 \theta$ scans
Absorption correction: empirical (XDISK; Siemens, 1991a) $T_{\text {min }}=0.588, T_{\text {max }}=0.726$
3051 measured reflections
1735 independent reflections 1384 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.087$
$S=1.112$
1729 reflections
133 parameters
H-atom parameters constrained
$D_{x}=1.518 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 50 reflections
$\theta=5.5-21.9^{\circ}$
$\mu=1.145 \mathrm{~mm}^{-1}$
$T=288$ (2) K
Near octahedron, dark green
$0.50 \times 0.34 \times 0.28 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=25.04^{\circ} \\
& h=-2 \rightarrow 8 \\
& k=-2 \rightarrow 10 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 50 \text { reflections } \\
& \text { intensity decay: average of } 0.65 \% \\
& \text { in } \sigma(I) \text { 's }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0488 P)^{2}\right. \\
& \quad+0.6217 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$) for (I), (II) and (III).

	(I)	(II)	(III)
$\mathrm{Cu}-\mathrm{O} 1$	$1.888(2)$	$1.888(2)$	$1.901(3)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.935(2)$	$1.932(2)$	$1.916(3)$
$\mathrm{O} 1-\mathrm{N} 1$	$1.381(3)$	$1.376(3)$	$1.372(4)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.283(3)$	$1.278(3)$	$1.281(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.447(4)$	$1.446(4)$	$1.450(5)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.307(3)$	$1.311(3)$	$1.303(5)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$			
$\mathrm{Cu}-\mathrm{O} 1-\mathrm{N} 1$	$84.21(8)$	$84.39(8)$	$84.3(1)$
$\mathrm{Cu}-\mathrm{O} 2-\mathrm{C} 2$	$109.1(2)$	$108.9(1)$	$108.6(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$110.6(2)$	$110.3(2)$	$110.5(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 2$	$111.8(2)$	$113.1(2)$	$113.4(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$117.4(2)$	$117.2(2)$	$117.1(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$130.8(2)$	$129.5(2)$	$129.4(3)$
	$118.6(2)$	$119.2(2)$	$119.5(4)$

Compound (II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClNO}_{2}\right)_{2}\right]$
$M_{r}=432.74$
Monoclinic, $P 2_{1} / n$
$a=6.5953$ (9) A
$b=19.503$ (2) \AA
$c=7.387$ (1) \AA
$\beta=116.454(9)^{\circ}$
$V=850.7(2) \AA^{3}$
$Z=2$

Data collection

Siemens $P 3$ diffractometer	$\theta_{\max }=25.00^{\circ}$
$\theta / 2 \theta$ scans	$h=0 \rightarrow 7$
Absorption correction: empirical	$k=0 \rightarrow 23$
$(X D I S K ;$ Siemens, $1991 a)$	$l=-8 \rightarrow 7$
$T_{\min }=0.527, T_{\max }=0.586$	3 standard reflections
1616 measured reflections	every 50 reflections
1487 independent reflections	intensity decay: average of 0.92%
1269 reflections with $I>2 \sigma(I)$	in $\sigma(I)$'s

$R_{\text {int }}=0.013$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0378 P)^{2}\right.$
$+0.5359 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Compound (III)

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{6}\right)_{2}\right] \cdot 2 \mathrm{CHCl}_{3}$
$M_{r}=782.61$
Monoclinic, $P 2_{1} / c$
$a=11.197$ (2) \AA
$b=9.571$ (1) \AA
$c=14.676(2) \AA$
$\beta=107.21(1)^{\circ}$
$V=1502.4(4) \AA^{3}$
$D_{x}=1.689 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 50 reflections
$\theta=7.22-23.63^{\circ}$
$\mu=1.622 \mathrm{~mm}^{-1}$
$T=288$ (2) K
Prism, dark green
$0.43 \times 0.38 \times 0.33 \mathrm{~mm}$
$\theta_{\text {max }}=25.00^{\circ}$
$h=0 \rightarrow 7$
$k=0 \rightarrow 23$
3 standard reflections every 50 reflections in $\sigma(I)$'s
$R\left(F^{2}\right)=0.076$
$S=1.117$
1478 reflections
115 parameters
H -atom parameters constrained

$$
Z=2
$$

$D_{x}=1.730 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 50 reflections
$\theta=6.3-18.2^{\circ}$
$\mu=1.327 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped, green
$0.44 \times 0.40 \times 0.15 \mathrm{~mm}$

Data collection

Siemens P3 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical
(XDISK; Siemens, 1991a)
$T_{\text {min }}=0.647, T_{\text {max }}=0.820$
2750 measured reflections
2611 independent reflections
1770 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.014$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.113$
$S=1.130$
2597 reflections
241 parameters
H-atom parameters constrained

$$
\theta_{\max }=25.04^{\circ}
$$

$h=0 \rightarrow 13$
$k=0 \rightarrow 11$
$l=-17 \rightarrow 16$
3 standard reflections every 50 reflections intensity decay: average of 1.1% in $\sigma(I)$'s

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0583 P)^{2}\right. \\
& \quad+1.1817 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Close intermolecular contacts (\AA) to nitro-O atoms (O3, O4, O5, O6) in (III).

Contact	Distance	Σ van der Waals radii (Pauling, 1960)
O3 $\cdots \mathrm{H} 1 E^{\text {i }}$	2.47	2.6
$\mathrm{O} 4 \cdots \mathrm{Cl} 2 A^{\mathrm{ii}}$	3.07 (1)	3.2
O5 $\cdots \mathrm{H} 1 A^{\text {iii }}$	2.68	2.6
O5 \cdots H1 $B^{\text {iii }}$	2.57	2.6
$\mathrm{O} 5 \cdots \mathrm{Cl} 3 A^{\text {iv }}$	3.43 (1)	3.2
O6 $\cdots \mathrm{Cl} 3 B^{v}$	3.303 (8)	3.2
O6 $\cdots \mathrm{N} 3^{\text {iii }}$	3.121 (6)	2.9
O6 $\cdots \mathrm{O}^{\text {iii }}$	2.855 (8)	2.8

Symmetry codes: (i) $-1-x, \frac{1}{2}+y,-\frac{1}{2}-z$; (ii) $-1-x, 1-y,-z$; (iii) $-x, 1-y,-z$; (iv) x, $1+y, z ;$ (v) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Table 3
Close inter- and intramolecular contacts to the phenyl-C atoms in (I), (II) and (III).

Contact	Distance	Σ van der Waals radii (Pauling, 1960)
(I)		
$\mathrm{H} 8 A \cdots \mathrm{H} 1 A$	2.11	2.4
H8A \cdots C1	2.74	3.2
(II)		
H8A \cdots H1A	2.43	2.4
H8A \cdots C1	2.96	3.2
$\mathrm{C} 8 \cdots \mathrm{Cl}^{\text {i }}$	3.483 (3)	3.5
(III)		
H8. . $\mathrm{H} 11 A$	2.13	2.4
H8 . ${ }^{\text {H1 }}$ B	2.59	2.4
H8...C1	2.92	3.2
$\mathrm{C} 4 \cdots \mathrm{O} 4^{\text {ii }}$	3.076 (5)	3.1
$\mathrm{C} 5 \cdots \mathrm{O} 2^{\text {iii }}$	3.131 (5)	3.1

For (III), $\mathrm{H} 1 A, \mathrm{H} 1 B$ and $\mathrm{H} 1 C$ were first selected by $S H E L X L 93$ (Sheldrick, 1993). When difference peaks exactly between these H atoms were noted, three additional H atoms were added. All six were assigned a multiplicity of 0.5 and were placed in ideal positions. The presence of peaks in the difference map indicated disordered chlorines in the CHCl_{3} librating approximately about the $\mathrm{C} 9-\mathrm{H} 9$ bond. Six chlorines, each with a multiplicity of 0.5 , were refined without any constraints. As the data reduction program (XDISK; Siemens, 1991a) gave a lower figure of merit for the space group $P c$, an alternate refinement in $P c$ was performed, though the test for the presence of an inversion center indicated a centrosymmetric space group. The refinement in $P c$ led to many elongated displacement ellipsoids and a higher R_{1} than the refinement in which $P 2_{1} / c$ was used.

For all compounds, data collection: P3/P4-PC Diffractometer Program (Siemens, 1991b); cell refinement: P3/P4-PC Diffractometer Program; data reduction: XDISK (Siemens, 1991a); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXTL/PC and SHELXL93.

We are grateful to K. R. Fountain for the benzohydroxamic acid and salts, and K. L. Martin for extensive comments on the manuscript.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1108). Services for accessing these data are described at the back of the journal.

References

Barclay, S. J. \& Raymond, K. N. (1986). Inorg. Chem. 25, 3561-3566.
Baughman, R. G. (1982). Chemistry and Biology of Hydroxamic Acids, edited by H. Kehl, pp. 72-82. Basel (Switzerland): Karger.
Bhattacharyya, B. C. \& Dhar, M. (1982). Indian J. Chem. 21, 420-423.
Carey, F. A. \& Sundberg, R. J. (1990). Advanced Organic Chemistry, 3rd ed., Part A: Structure and Mechanisms, pp. 288-290. New York: Plenum Press.
Elerman, Y., Atakol, O., Svoboda, I. \& Geselle, M. (1995). Acta Cryst. C51, 1520-1522.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 260. Ithaca: Cornell University Press.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Siemens (1991a). XDISK. Version 4.20.2PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1991b). P3/P4-PC Diffractometer Program. Version 4.23. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. \& Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807-2817.

Stocker, F. B., Fadden, P., Dreher, S. \& Britton, D. (1999). Inorg. Chem. 38, 3251-3253.
Thompson, L. E., Xu, Z., Goeta, A. E., Howard, J. A. K., Clase, H. J. \& Miller, D. O. (1998). Inorg. Chem. 38, 3251-3253.

[^0]: \dagger Current address: Department of Chemistry, University of Central Oklahoma, Edmond, OK 73034-5209, USA.

